AC Diffusion: Transport in Porous Networks Subjected to Zero-Time-Average Advective Flow

نویسندگان

  • J. J. Claria
  • G. H. Goldsztein
  • J. C. Santamarina
چکیده

Diffusion is a slow transport mechanism and advective transport tends to dominate in large-size systems. An alternative transport mechanism is explored herein, whereby zero time-average cyclic fluid flow is compounded with pore-scale mixing to render effective transport. Two one-dimensional cyclic flow cases are analyzed: a rigid porous network with two open boundaries subjected to cyclic flow through, and a compressible porous network with only one open boundary subjected to cyclic compression. The corresponding analytical models predict diffusion-like macroscale response and provide explicit expressions for the effective diffusion coefficients in terms of the microstructure of the porous medium and flow conditions. A parallel experimental study is conducted to corroborate analytical predictions. Results confirm the relevance of pore-scale mixing in cyclic flow as a transport mechanism in porous networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solute transport during cyclic flow in saturated porous media

We consider materials with large pores interconnected by thin long channels saturated with an incompressible fluid. In the absence of fluid flow, solute transport in the porous network is diffusion controlled, however, solute transport can be enhanced when the porous network is subjected to a cyclic flow with zero time average velocity. We develop a mathematical model to analyze this physical p...

متن کامل

Solute Transport for Pulse Type Input Point Source along Temporally and Spatially Dependent Flow

In the present study, analytical solutions are obtained for two-dimensional advection dispersion equation for conservative solute transport in a semi-infinite heterogeneous porous medium with pulse type input point source of uniform nature. The change in dispersion parameter due to heterogeneity is considered as linear multiple of spatially dependent function and seepage velocity whereas seepag...

متن کامل

Solute Transport for Pulse Type Input Point Source along Temporally and Spatially Dependent Flow

In the present study, analytical solutions are obtained for two-dimensional advection dispersion equation for conservative solute transport in a semi-infinite heterogeneous porous medium with pulse type input point source of uniform nature. The change in dispersion parameter due to heterogeneity is considered as linear multiple of spatially dependent function and seepage velocity whereas seepag...

متن کامل

Numerical Upscaled Model of Transport in Multiscale Porous Media

We study numerically a new model describing the multiscale flow of a single-phase incompressible fluid and transport of a dissolved chemical by advection and diffusion through a heterogeneous porous medium without the usual assumptions of scale separation. The new model includes as special cases the classical homogenized model as well as the double porosity models, but it is characterized by th...

متن کامل

Study of MHD Second Grade Flow through a Porous Microchannel under the Dual-Phase-Lag Heat and Mass Transfer Model

A semi-analytical investigation has been carried out to analyze unsteady MHD second-grade flow under the Dual-Phase-Lag (DPL) heat and mass transfer model in a vertical microchannel filled with porous material. Diffusion thermo (Dufour) effects and homogenous chemical reaction are considered as well. The governing partial differential equations are solved by using the Laplace transform method w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012